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In this paper a numerical algorithm, based on the decomposition technique, is
presented for solving a class of nonlinear boundary value problems. The method
is implemented for well-known examples, including Troesch’s and Bratu’s prob-
lems which have been extensively studied. The scheme is shown to be highly ac-
curate, and only a few terms are required to obtain accurate computable solutions.
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1. INTRODUCTION

The Adomian polynomial algorithm has been extensively used to solve linear and
nonlinear problems arising in many interesting applications (see, for example, [3, 4, 11,
12, 13, 19]). The algorithm (a decomposition method) assumes a series solution for the
unknown quantity. It has been shown [10] that the series converges fast, and with only a
few terms this series approximates the exact solution with a fairly reasonable error, nor-
mally less than 1%. In this paper, we shall adapt the algorithm to the solution of boundary
value problems arising in the modeling of interesting applications. The idea here is to ob-
tain the integral representation of the boundary value problem through the construction of
the underlying Green’s function. We will adapt the decomposition method to the integral
formulation

u(x)=
∫ b

a
g(x, s)F(u(s)) ds+ f (x) (1.1)

and analyze the solution. In (1.1),g, F , and f are known functions.
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The balance of this paper is as follows. In Section 2, we give a brief description of the
decomposition method. In Section 3, we will describe the general algorithm as it applies
to the solution of boundary value problems. In Section 4, we adapt the algorithm for some
examples of the boundary value problems. In particular, we will consider Troesch’s problem
[21] and Bratu’s problem [8]. A brief discussion of these problems will also be given in
Section 4.

2. ANALYSIS

In this section we first describe the algorithm of the decomposition method as it applies
to a general nonlinear equation of the form

u− N(u)= f, (2.1)

whereN is a nonlinear operator on a Hilbert spaceH and f is a known element ofH .
We assume that for a givenf a unique solutionu of (2.1) exists.

The decomposition method assumes a series solution foru given by

u=
∞∑

n=0

un = u0+ u1+ u2+ · · · (2.2)

and the nonlinear operatorN can be decomposed into

N(u) =
∞∑

n=0

An, (2.3)

where theAn’s are the Adomian polynomials ofu0, . . . ,un given by

An= 1

n!

dn

dλn

[
N

( ∞∑
i=0

λi ui

)]
λ=0

n = 0, 1, . . . . (2.4)

Substituting equations (2.2) and (2.3) into the functional equation (2.1) yields

∞∑
n=0

un−
∞∑

n=0

An = f. (2.5)

If the series in (2.5) is convergent, then (2.5) holds upon setting

u0 = f

u1 = A0(u0)

u2 = A1(u0, u1)
(2.6)

...

un = An−1(u0, u1, . . . ,un−1)
...

Thus, one can recursively determine every term of the series
∑∞

n=0 un. The convergence
of this series has been established (see [7]). The two hypotheses necessary for proving
convergence of the decomposition method as given in [7] are:
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Condition 1. The nonlinear functional equation (2.1) has a series solution
∑∞

n=0 un such
that

∑∞
n=0(1+ ε)n|un|<∞, whereε >0 may be very small.

Condition 2. The nonlinear operatorN(u) can be developed in the seriesN(u)=∑∞
n=0 αnun.

These hypotheses, for proving convergence, are generally satisfied in physical problems.
To illustrate the scheme, let the nonlinear operatorN(u) be a nonlinear function ofu,

sayg(u). Assume that the Taylor expansion ofg(u) aroundu0 is

g(u) = g(u0)+ g(1)(u0)(u− u0)+ 1

2!
g(2)(u0)(u− u0)

2+ · · · . (2.7)

Substituting the differenceu− u0 from Eq. (2.2) into Eq. (2.7), we get

g(u) = g(u0)+ g(1)(u0)(u1+ u2+ · · ·)+ 1

2!
g(2)(u0)(u1+ u2+ · · ·)2+ · · · .

After expanding, this results in

g(u) = g(u0)+ g(1)(u0)(u1+ u2+ · · ·)

+ 1

2!
g(2)(u0)

(
u2

1+ 2u1u2+ 2u1u3+ u2
2+ 2u2u3+ u2

3+ · · ·
)

+ 1

3!
g(3)(u0)

(
u3

1+ 3u2
1u2+ 3u2

1u3+ 3u1u2
2+ 3u1u2

3+ · · ·
)+ · · · . (2.8)

Adomian polynomials are obtained by a reordering and rearranging of the terms given in
Eq. (2.8). Indeed, to determine the Adomian polynomial, one needs to determine the order
of each term in Eq. (2.8), which actually depends on both the subscripts and the exponents
of the un’s. To be more specific, we define the order of the componentum

l to beml, and
um

l un
j to beml+ nj . Then the Adomian polynomialA0 depends onu0 with order 0,A1

depends uponu0 andu1 with order 1, etc. Therefore, rearranging the terms in the expansion
Eq. (2.8) according to the order, and assuming thatN(u) is as given in Eq. (2.3), will give
An as

A0 = g(u0)

A1 = u1g(1)(u0)

A2 = u2g(1)(u0)+ u2
1

2!
g(2)(u0) (2.9)

A3 = u3g(1)(u0)+ u1u2g(2)(u0)+ u3
1

3!
g(3)(u0)

...

Once theAn are determined by Eq. (2.9), one can recurrently determine the termsun of the
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series from Eq. (2.6), and hence the solutionu. It is easy to verify that whenN(u) is g(u),
formula (2.4) yields the same result as in (2.9).

For a detailed description of the decomposition method, we refer the reader to [2–7].
Since we will form the integral representation of boundary value problems in Section 4,

we describe the application of the decomposition method to an integral equation of the form

u(x) =
∫ b

a
g(x, s)F(u(s)) ds+ f (x), (2.10)

whereg(x, s) is referred to as the kernel,F is a nonlinear function ofu, and f (x) is a given
function.

AssumingF(u) is analytic (and thus satisfies Condition 2), we can write

F(u) =
∞∑

k=0

Ak(u0, u1, . . . ,uk), (2.11)

whereAk are the specially generated Adomian polynomials given by (2.4). We note that the
expansionA0, A1, A2, . . . is valid in general when the nonlinearity,F(u), admits a Taylor
expansion atu0 (see [16]).

Substituting Eqs. (2.2) and (2.11) into Eq. (2.10), we have

u0+ u1+ u2+ · · · =
∫ b

a
g(x, s)(A0+ A1+ A2+ · · ·) ds+ f (x).

If the series is convergent, then we can determine each term of the series
∑∞

n=0 un

recursively:

u0 = f (x),

u1 =
∫ b

a
g(x, s)A0(u0) ds,

u2 =
∫ b

a
g(x, s)A1(u0, u1) ds (2.12)

· · ·
un =

∫ b

a
g(x, s)An−1(u0, u1, . . . ,un−1) ds,

· · ·

The algorithm in (2.12) determines theui ’s and hence the solutionu can determined by
Eq. (2.2). The decomposition method can be applied to solve problems in higher dimensions
(see [6, 7]). We will specify how Conditions 1 and 2 are satisfied for the examples that will
be presented in Section 4.

3. APPLYING THE DECOMPOSITION METHOD TO BOUNDARY VALUE PROBLEMS

In this section we consider boundary value problems of the form

−u′′ = λF(u)
(3.1)

u(0) = α, u(1) = β,
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whereλ>0 and the nonlinear functionF(u) is assumed to have a power series representation
in accordance with Condition 2.

The Green’s function of (3.1) is well known (see [20, 23]) and is given by

g(x, s) =
{

s(1− x), 0≤ s ≤ x

x(1− s), x ≤ s ≤ 1
. (3.2)

Problem (3.1) can then be represented in an integral form as

u(x) = λ
∫ 1

0
g(x, s)F(u(s)) ds+ (1− x) α + xβ. (3.3)

The nonlinear equation in (3.3) will be solved using the decomposition method as in
Section 2. Again, we assume a series solution for (3.3),

u =
∞∑

i=0

ui , (3.4)

which is convergent if a condition like Condition 1 is met. The nonlinear functionF(u) is

F(u) =
∞∑

i=0

Ai , (3.5)

whereAi are the Adomian polynomials constructed in the way explained in Eq. (2.9). If
F(u) has a Taylor expansion atu0,

F(u) = F(u0)+ F ′(u0)(u− u0)+ F ′′(u0)

2!
(u− u0)

2+ F (3)(u0)

3!
(u− u0)

3+ · · ·

with u− u0= u1+ u2+ · · ·, then the Adomian polynomialsA0, A1, A2, . . . are given by

A0 = F(u0),

A1 = u1F ′(u0),

A2 = u2
1F ′′(u0)

/
2!+ u2F ′(u0),

A3 = u3F ′(u0)+ 2u1u2F ′′(u0)/2!+ u3
1F (3)(u0)

/
3!,

A4 = u4F ′(u0)+
(
2u1u3+ u2

2

)
F ′′(u0)

/
2!+ 3u2

1u2F (3)(u0)
/

3!+ u4
1F (4)(u0)

/
4!,

...

As we noted earlier, the expansionsA0, A1, . . . are valid in general whenF(u) admits a
Taylor expansion atu0.

It follows from the series solution and Eq. (3.3) that

u(x) =
∞∑

i=0

ui = λ
∫ 1

0
g(x, s)

∞∑
i=0

Ai ds+ (1− x)α + xβ

= λ
∞∑

i=0

∫ 1

0
g(x, s)Ai ds+ (1− x)α + xβ. (3.6)
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Equating each term yields

u0 = (1− x) α + xβ,

u1 = λ
∫ 1

0
g(x, s)A0 ds

(3.7)
...

un+1 = λ
∫ 1

0
g(x, s)An ds.

Since all theui ’s are known, the solutionu= u0+ u1+ u2+ · · · to Eq. (3.3) is determined.

4. EXAMPLES

In this section we apply the algorithm described in the previous section to some examples
of boundary value problems.

EXAMPLE 1 (Troesch’s problem). In this example we consider the boundary value prob-
lem, Troesch’s problem,

u′′ = λ sinhλu, 0≤ x ≤ 1 (4.1)

with the boundary conditionsu(0)= 0, u(1)= 1.
Troesch’s problem was described and solved by Weibel [22]. It arises from a system of

nonlinear ordinary differential equations which occur in an investigation of the confinement
of a plasma column by radiation pressure. The problem has been studied extensively. Troesch
found its numerical solution by the shooting method (see [21]). The closed form solution
to this problem in terms of the Jacobian elliptic function has been given in [18] as

u(x) = 2

λ
sinh−1

{
u̇(0)

2
sc

(
λx | 1− 1

4
u̇2(0)

)}
, (4.2)

whereu̇(0), the derivative ofu at 0, is given by the expressionu̇(0)= 2(1−m)1/2, with m
being the solution of the transcendental equation

sinh
(
λ
2

)
(1−m)1/2

= sc(λ | m), (4.3)

where sc(λ |m) is the Jacobi elliptic function3 (see, for example, [1, 14]). From (4.2), it was
noted in [18] that a pole ofu(t) occurs at a pole of sc(λx | 1− 1

4u̇2(0)). It was also noted in
[18] that the pole occurs at

x ≈ 1

2λ
ln

(
16

1−m

)
. (4.4)

3 The Jacobi elliptic function sc(λ |m) is defined by sc(λ |m) = sinφ
cosφ

, whereφ, λ, andm are related by the
integral

λ =
∫ φ

0

dθ

(1−msin2θ)1/2
.

It also has an equivalent definition given in terms of a lattice.
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Here we will show how to apply the decomposition method to solve this problem. We
will present the solution for 0<λ≤ 1. It is for these values ofλ’s that the method converges.
For λ>1, it follows from (4.4) that the pole of the exact solutionu(t), (i.e., the pole of
sc(λx | 1− 1

4u̇2(0))) occurs within the interval (0, 1). Thus forλ>1, Conditions 1 and 2 for
the convergence of the decomposition method stated in Section 2 will be violated. Indeed,
the nonlinearity sinh(λu) will not be analytic.

We first write the integral equation to this boundary value problem following Eq. (3.3),

u(x) = (1− x)
∫ x

0
−sλ sinh(λu) ds+ x

∫ 1

x
−(1− s)λ sinh(λu) ds+ x. (4.5)

Let

u0 = x.

We expand sinh(λu) aroundu0,

sinh(λu) = sinh(λu0)+ λ cosh(λu0)(u− u0)+ λ
2 sinh(λu0)

2!
(u− u0)

2

+ λ
3 cosh(λu0)

3!
(u− u0)

3+ λ
4 sinh(λu0)

4!
(u− u0)

4+ · · · , (4.6)

and also in terms of the Adomian polynomials as

sinh(λu) = A0+ A1+ A2+ A3+ A5+ · · · .

Observing thatu− u0= u1+ u2+ u3+ · · ·, we obtain the Adomian polynomials with the
first six listed below:

A0 = sinh(λu0),

A1 = λu1 cosh(λu0),

A2 = λu2 cosh(λu0)+ 1

2
λ2u2

1 sinh(λu0),

A3 = λu3 cosh(λu0)+ λ2u1u2 sinh(λu0)+ 1

3!
λ3u3

1 cosh(λu0),

A4 = λu4 cosh(λu0)+ λ2u1u3 sinh(λu0)+ 1

2!
λ2u2

2 sinh(λu0)+ 1

2
λ3u2

1u2 cosh(λu0)

+ 1

4!
λ4u4

1 sinh(λu0),

A5 = λu5 cosh(λu0)+ λ2(u1u4+ u2u4) sinh(λu0)+ 1

2
λ3
(
u2

1u3+ u1u2
2

)
cosh(λu0)

+ 1

5!
λ5u5

1 cosh(λu0),

· · ·

Continuing this method, we can findA6, A7, etc. These expressions, along with Eq. (4.5),
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yield the series solution of Troesch’s problem,

u(x) =
∞∑

k=0

uk(x), (4.7)

whereuk(x) are given by the iteration scheme

u0 = x,

uk+1(x) = (1− x)
∫ x

0
−sλAk ds+ x

∫ 1

x
−(1− s)λAk ds,

for k= 1, 2, 3, . . ..
We used the computer algebra system, Maple V, to obtain the first six iterations inu. We

list the first three terms:

u0 = x,

u1 = sinh(λx)− x sinh(λ)

λ
,

u2 = − 1

4λ2
[−λ cosh(λx) sinh(λx)+ 4λx sinh(λ) cosh(λx)− 8 sinh(λ) sinh(λx)

− 3λx sinh(λ)cosh(λ)+ 8x cosh2(λ)− 8x],
...

The approximation is carried out for Troesch’s problem withλ= 0.5 and λ= 1 at
x= 0.1, 0.2, . . ., and 1.0. Tables I and II exhibit the results of the approximation using
only six terms in Eq. (4.7) forλ= 0.5 and 1. These tables also give the value of the exact
solutions as given in the closed form (4.2). In (4.2), for a givenλ, we use (4.3) to determine
m and the expressioṅu(0)= 2(1−m)1/2 to determinėy(0). The last column of the table
lists the error.

The errors in Table II are less than 1.3%. The decomposition method is immediate to
apply and yields a reasonable approximation to the solution when 0<λ≤ 1 with only

TABLE I

Decomposition Method Approximation for u′′ =λ sinhλu (λ = 0.5),

u(0) = 0, u(1) = 1

x Exact solution Numerical solution Error

0.1 0.0951769020 0.0959383534 0.0007614514
0.2 0.1906338691 0.1921180592 0.0014841901
0.3 0.2866534030 0.2887803297 0.0021269267
0.4 0.3835229288 0.3861687095 0.0026457807
0.5 0.4815373854 0.4845302901 0.0029929047
0.6 0.5810019749 0.5841169798 0.0031150049
0.7 0.6822351326 0.6851868451 0.0029517125
0.8 0.7855717867 0.7880055691 0.0024337824
0.9 0.8913669875 0.8928480234 0.0014810369
1.0 0.9999999999 0.9999999988 0.0000000011
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TABLE II

Decomposition Method Approximation for u′′ =λ sinhλu (λ = 1),

u(0) = 0, u(1) = 1

x Exact solution Numerical solution Error

0.1 0.0817969966 0.084248760 0.0024517634
0.2 0.1645308709 0.169430700 0.0048998291
0.3 0.2491673608 0.256414500 0.0072471392
0.4 0.3367322092 0.346085720 0.0093535108
0.5 0.4283471610 0.439401985 0.0110548241
0.6 0.5252740296 0.537365700 0.0120916704
0.7 0.6289711434 0.641083800 0.0121126566
0.8 0.7411683782 0.751788000 0.0106196218
0.9 0.8639700206 0.870908700 0.0069386794
1.0 1.0000000020 0.999998200 0.0000018020

six terms of the series, which are easy to compute using a computer algebra system (for
example, Maple V). Forλ>1, we already noted that the decomposition method does not
yield a good approximation because the exact solutionu(x) has a pole within the interval
(0, 1).

Also, the graphs of the exact solution (solid curve) and the solution obtained by the
decomposition method (dotted curve) are presented in Figs. 1 and 2.

EXAMPLE 2 (Bratu’s problem). We consider the boundary value problem

−u′′ = λeu (4.8)

with the boundary conditionsu(0)= 0, u(1)= 0.

FIG. 1. Troesch’s problem: decomposition method versus analytic solution (λ= 0.5).
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FIG. 2. Troesch’s problem: decomposition method versus analytic solution(λ= 1).

This is referred to in the literature [8, 15] as Bratu’s problem. In higher dimension,
Eq. (4.8) models a combustion problem in a slab. It was noted in [9] that the function

u(x) = −2 log

[
cosh

(
0.5(x − 0.5)θ

0.25 coshθ

)]
(4.9)

is a solution to (4.8), providedθ is the solution ofθ =√2λ cosh(θ/4). This equation has
two, one, or no solution whenλ<λc, λ= λc, λ>λc, where the critical valueλc satisfies
the equation 1= 1

4

√
2λ sinh( θ4). Numerical solutions of this problem were obtained by a

shooting method (see [9, 17]).
Problem (4.8) can be represented in an integral form as in Eq. (3.3),

u(x) = λ
∫ 1

0
g(x, s)eu ds,

whereg(x, s) is the Green’s function given in (3.2). According to the analysis in Section 3,
the solutionu(x) is represented by the series as in (3.4) withu0= 0.

The nonlinearityeu may be expanded using Eq. (3.5),

eu =
∞∑

i=0

Ai = A0+ A1+ A2+ · · · .

From the Taylor series ofeu atu0 (which is 0 in this example)

eu = 1+ u+ 1

2!
u2+ 1

3!
u3+ · · · ,

we can find

A0 = 1,

A1 = u1eu0,

A2 = u2+ 1

2!
u2

1,
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A3 = u3+ u1u2+ 1

3!
u3

1,

A4 = u4+ u1u3+ 1

2!
u2

2+
1

2
u2

1u2+ 1

4!
u4

1,

...

Substitution of Ai (i = 0, 1, 2, . . .) into Eq. (3.7) yields the values ofu1, u2, . . . ,

un+1, . . . . Then the solutionu(x)= u0+ u1+ u2+ · · · can be determined by Eq. (3.6).
Using the computer algebra system Maple V, we can obtain the first several terms. We list
only the first three terms:

u1 = −1

2
λx2+ 1

2
λx,

u2 = 1

24
λ2x4− 1

12
λ2x3+ 1

24
λ2x,

u3 = − 1

180
λ3x6+ 1

60
λ3x5− 1

96
λ3x4− 1

144
λ3x3+ 1

160
λ3x,

...

We shall consider, for example, the caseλ= 1. In this case, problem (4.8) has two locally
unique solutionsu1 andu2 with u′1(0)≈ 0.549 andu′2(0)≈ 10.909 (see [9]). The solution
of the decomposition method given byu0+ u1+ u2+ u3+ · · · converges to the solution
u′1(0)≈ 0.549, and not to the solutionu′2(0)≈ 10.909.

In Table III we compare the exact solution derived from Eq. (4.9) with the numerical so-
lution obtained by the decomposition method using only four terms atx= 0.1, 0.2, . . . ,1.0
for λ= 1.

We observe that the error is less than 0.31%.
The accuracy of the approximation is also reflected in Fig. 3, in which the solid curve

represents the analytic solution, while the dotted curve is the approximation solution. We
can observe the almost perfect match of these two solutions.

TABLE III

Decomposition Method Approximation for u′′ =λeu (λ = 1),

u(0) =u(1) = 0

x Exact solution Numerical solution Error

0.1 0.0498467900 0.0471616875 0.0026851025
0.2 0.0891899350 0.0871680000 0.0020219350
0.3 0.1176090956 0.1177614375 0.0001523419
0.4 0.1347902526 0.1369920000 0.0022017474
0.5 0.1405392142 0.1435546875 0.0030154733
0.6 0.1347902526 0.1369920000 0.0022017474
0.7 0.1176090956 0.1177614375 0.0001523419
0.8 0.0891899350 0.0871680000 0.0020219350
0.9 0.0498467900 0.0471616875 0.0026851025
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FIG. 3. Bratu’s problem: decomposition method versus analytic solution (λ= 1).

Forλ<1, the result with only four terms is even better than 0.3%. Asλ approaches the
critical valueλc, the error becomes larger, and the convergence becomes slower as shown
in the case ofλ= 2 below. This is due to the fact that the decomposition method yields
solutions that converge to one of the solutions of problem (4.8). As we noted earlier, in the
case ofλ= 1, the solution converges to the solution with the initial conditionu′1(0)≈ 0.549.
In summary, the decomposition method with only four terms seems to give a very reasonable
approximation, and the terms can be easily computed using a computer algebra system, e.g.,
Maple V.

Table IV and Fig. 4 show the analytic and the the decomposition method solutions
obtained by the decomposition method forλ= 2. We observe that the error is about 1%,
and Fig. 4 shows that the discrepancy between the analytic and the approximate solution
starts to aggravate.

In this paper we presented the decomposition method as an alternate method to the
shooting method to solve two important boundary value problems. In both problems, the

TABLE IV

Decomposition Method Approximation for u′′ =λeu (λ = 2),

u(0) =u(1) = 0

x Exact solution Numerical solution Error

0.1 0.0991935000 0.1144107440 0.0152172440
0.2 0.1917440000 0.2064191156 0.0146751156
0.3 0.2679915000 0.2738793116 0.0058878116
0.4 0.3183360000 0.3150893646 0.0032466354
0.5 0.3359375000 0.3289524214 0.0069850786
0.6 0.3183360000 0.3150893646 0.0032466354
0.7 0.2679915000 0.2738793116 0.0058878116
0.8 0.1917440000 0.2064191156 0.0146751156
0.9 0.0991935000 0.1144107440 0.0152172440
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FIG. 4. Bratu’s problem: decomposition method versus analytic solution (λ= 2).

method yields accurate computable solutions with good approximation using only a few
terms, provided that the parameterλ satisfies 0< λ ≤ 1.
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